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Lecture 21:

* Joint Random Variables: Basic Notions

* JRVs: Independence, Covariance, and Correlation



Joint Random Variables

A Joint Random Variable is a pair of random variables:

X,Y) : S>RXR

Now when an outcome is requested, the sample point is translated into two
real numbers by the action of each random variable responding to the same

experiment:

Throw two dice: X = "the number of heads showing," and
Y = "1 if both tosses are heads, 0 otherwise."

X, Y)

def XY():
a = randint(0,2)
b = randint(0,2)
return (atb,a*b)

(1.0,0.0)



Joint Random Variables

A Joint Random Variable is a pair of random variables:

X,Y) : S>RXR

Now when an outcome is requested, the sample point is translated into two
real numbers by the action of each random variable responding to the same
experiment:

Throw two dice: X = "the number of heads showing," and
Y = "1 if both tosses are heads, 0 otherwise."
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Joint Random Variables

Since the sample space can be just about anything, there is wide latitude in
creating the random variables and their relationship (or lack thereof):

They may be obviously dependent:

Throw two dice: X = "the number of heads showing on both coins," and
Y = "the number of heads showing on the first coin."
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Joint Random Variables

Since the sample space can be just about anything, there is wide latitude in creating
the random variables and their relationship (or lack thereof):

They may be obviously independent:

Throw two dice: X = "the number of heads showing on the second coin, and
Y = "the number of heads showing on the first coin."
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Joint Random Variables

A joint random variable (X,Y) is called discrete if both X and Y are discrete, and
continuous if both X and Y are continuous. Other combinations are possible, but we will
only consider these two.

Probability Mass Function for a Discrete JRV (X)Y):

The probability that X produces value j and Y produces value k is:

fxyU,k) = PX =j,Y =k)

Example 1: Toss 2 coins; X = # heads on first coin, Y = # heads on second

Sample Space X Y
TT 0 0 fx v(0,0) = 0.25
TH 0 1 fX,Y(O’1) = 0.25
H T 1 O fX,Y(1 ,O) = 025
H H 1 1 fX,Y(1’1) = 0.25



Joint Random Variables: Joint Probability Function

fxy(U,k) = PX =j,Y =k)

Example 1: Toss 2 coins; X = # heads on first coin, Y = # heads on second

Sample Space X Y

TT 0 0

TH 0 1

HT 1 0

HH 1 1

Y

0 1
X 1 0.25 0.25
0 0.25 0.25

fxv(0,1)

fxv(0,0) = 0.25

fxv(0,1) = 0.25

fxv(1,0) = 0.25 Note:

fxv(1,1) = 0.25 Probabilities are

volumes!

0.2
fx v(X,y)

l 0.1




Joint Random Variables: Joint Probability Function

fxy(U,k) = PX =j,Y =k)

Example 2: Toss 2 coins; X = # heads on first coin, Y =1 if 2 heads, 0 else

Sample Space X Y
fx’y(0,0) = 0.5
TT 0 0 fxy(0,1) = 0.0
L': (1) 8 fuy(1,0) = 0.25
fvv(1,1) = 0.25
H H 1 1 A1)
Y
0 1
X 1 0.25 0.25
0 0.5 0




Joint Random Variables: Joint Probability Function

Question: Toss 2 coins; X = 1 if 2 heads, 0 else, Y = total number of heads

What is the joint probability chart for this Joint Random Variables?

Toss 1 Toss 2 X Y
H H
H T
T H
) } T
Y
0 1 2 p(x)
X 1

p(Y,')5




Joint Random Variables: Joint Probability Function

Question: Toss 2 coins; X = 1 if 2 heads, 0 else, Y = total number of heads

What is the joint probability chart for this Joint Random Variables?

Toss 1 Toss 2 X Y
H H 1 2
H T 0 1
T H 0 1
T T 0 0
Y
0 1 2 p(x)
X 1 0 0 0.25 0.25
0.25 0.5 0 0.75
p(y)): 0.25 0.5 0.25 1 -
06 7 -
I
04
0
0.2

\rea




Joint Random Variables: Marginal Distributions

The Marginal Distributions of a Joint Random Variable are the individual
random variables, considered separately from each other:

fx() = PX=j) = Y fxy(.k) fr) = PO =0) =Y fir(G.k)
kERy jERx

Example 1: TOSS 2 COlnS; I - Ny Marginal Distribution of X
X = # heads on first coin, x 1 0.25 0.25 0.5 04 |
Y = # heads on second 0 = = 0> T B
Sample Space X X Marginal Distribution of Y

TT 0 0 " [

TH 0 1 Al B B

HT 1 0 : 1

HH 1 1




Joint Random Variables: Marginal Distributions

Example 2: Toss 2 coins; X = # heads on first coin, Y =1 if 2 heads, 0 else

Y
0 1
X 1 0.25 0.25 0.5
0 0.5 0 0.5
0.75 0.25
Marginal Distribution of Y
0.8
06 +—
04 -
0 i)
0

0.6
0.4
0.2

Marginal Distribution of X

i




Joint Random Variables: Marginal Distributions

Example 3: Toss 2 coins; X = # heads on first coin, Y = total # of heads

Y Marginal Distribution of X
0 1 2 0.6
X 1 0 0.25 0.25 0.5 0.4
0 0.25 0.25 0 0.5 0.2 - ‘
0.25 0.5 0.25 0 - : .
1 0
Marginal Distribution of Y
0.6
0.4 04
0.2 ’ 0.2
il B
1 2 0
X ~ Bern(0.5)  EX)=0.5 Var(X) = 0.5%0.5=0.25 ogyx=0.5
Y ~ B(2,0.5) EY)=1 Var(Y) = 2%0.5%0.5=0.5 oy =0.717




Joint Random Variables: Marginal Distributions

We will mostly concern ourselves with the

Y Marginal Distribution of X
bivariate case (two RVs), and in lab we will " - 4@ amiar
study ways of displaying 2D data. Tt = .
pa—
'The main insight you need for the 2D case o

is that now,

03
02 02
2B BEEE T
0 1
0
o Probabilities are volumes; and

o The volume of a probability space must be 1.0.

3D Histogram




Joint Random Variables: The Continuous Case

We will not do much with the continuous case, but the modifications are straight-
forward (must use 2D intervals/areas, replace sums with integrals).

Discrete Case (can use PMF) Continuous Case (must use CDF)
fxy(x,y) = PX=x,Y =) fxy(x,y) = P(X=x,Y =)
Fyy(x,y) = P(X <x,Y <) Fyy(x,y) = P(X<x,Y <)

f2%) = S AAX=%0) fx®) = / P(X = x,3)
YERy

fy(y) = Zyepr, P(x,Y =y)
fr(y) = / P(x,Y =y)
XERy




Joint Random Variables: The Continuous Case

It is often useful to display the marginal distributions along with the joint distribution:




Joint Random Variables: The Continuous Case

It is often useful to display the marginal distributions along with the joint distribution:

Af

f()

(marginal)

fial)

(marginal)

Fraxal)
(joint)

Fapa(X,,b)
(conditional)



Joint Random Variables: The Continuous Case

Example: Bivariate Uniform Distribution (X,Y)

def uniform2D():
return ( random(), random() )

PDF is a unit cube of volume 1.0: But in the uniform case it
can be viewed from ABOVE

as a unit square:

Probability

0,1 (1,1)

Y 0.5

00,0 (1.0




Joint Random Variables: Independence (Review!)

Again, we can easily define the notion of independence, using the expected
definition; e.g., two random variables are independent if and only if

fxyUs,k) = fx() * fy(k)

That is, each joint probability is the product of the marginal probabilities.

INDEPENDENT:
Example 1: Toss 2 coins; : : g Margiial Distribustion of X
X = # heads on first coin, x 1 0.25 0.25 05 s N
Y = # heads on second g o o 05 02 ma
1 0
Sample Space l X Marginal Distribution of Y

0.6

TT 0 Nl BN " jl
TH 0 Nl I B il j
1 2 : Y
1 —/

HT
HH

- O -0




Joint Random Variables: Independence

Again, we can easily define the notion of independence, using the expected
definition; e.g., two random variables are independent if and only if

fxyU.k) = fx() * fy(k)

That is, each joint probability is the product of the marginal probabilities.

DEPENDENT:
Y Marginal Distribution of X
0 1 0.6
X 1 0.25 0.25 0.5 0.4
0 0.5 0 0.5 0.2
0.75 0.25 0 . . -
1 0

0.8

0.2

Marginal Distribution of Y

06 -
04 -

OHH




Joint Random Variables as Multivariate Points

The standard way of presenting a Joint Random Variable is to specify the
range of each marginal distribution and the probabilities of each tuple

returned by the JRV:

Example 3: Toss 2 coins; X = # heads on first coin, Y = total # of heads

R_Y Marginal Distribution of X
0 1 2 0.6
0 0.25 0.25 0.5 04 —
0.25 0.25 0 0.5 0.2 .
0.25 0.5 0.25 0 - . .:
1 0
Marginal Distribution of Y
0.6
0.4 0.4
02 +— — 0.2
ol NN . o
0 1 2 0
X ~Bern(0.5) EX)=0.5 Var(X) = 0.5%0.5=0.25 ox=0.5
Y ~ B(2,0.5) E(Y)=1 Var(Y) = 2%0.5%0.5= 0.5 0oy =0.717




Joint Random Variables as Equiprobable Tuples

However, when not all possible tuples are possible (there are 0’s in the matrix),
but those that are possible are equiprobable, then it may be simpler to simply

list the tuples:

o=

Marginal Distribution of X

0.25

0.25

0.5 04 -

0.25

0.25

0.25

0.5

0.25

06

Marginal Distribution of ¥

04 -

02 -

—
0

(0,0),

(0,1),

= Nl BN
0 4

(1,1), (1,2) }



Joint Random Variables as Equiprobable Tuples

This is particularly true when thinking about sampling points from a large
population, such as tuples of real numbers.

For example, suppose you have two thermometers, one showing Fahrenheit,
and one showing Celsius, and you test them by taking 10 samples, yielding 10
pairs of floating-point numbers, which can be shown by a scatterplot:

[ (45.2, 9.1)
(48.2, 9.4)
(49.1, 10.5
(49.8, 12.1
(52.4, 13.2
(55.9, 12.3
(58.6, 15.7
(61.7, lo.1l
(63.1, 17.1
(6d4.1, 18.2

~

A, 94,

~

N S’ SN’ S’ S S S’ S’ W

Fahrenheit vs Celsius

18

- - - - -
Y Axis
=
3
@

~
—
o

~

450 4715 500 525 550 55 600 65 650
X Axis

| N— )

45.2, 48.2, 49.1, 49.8, 52.4, 55.9, 58.6, 61.7, 63.1, 64.1]
9.1

10.5, 121, 13.2, 12.3, 15.7, 16.1, 17.1, 18.2]



Joint Random Variables as Equiprobable Tuples

When the number of points is not too large, then we can represent the sampled points as

a matrix, giving all the equiprobable tuples equal probability:

Example: Roll a single die. 7
X = number showing on the die ‘
Y=7-X

Sampling Version:

RX,Y = { (1) 6)7 (2> 5)) (3) 4)) (4) 3)7 (5) 2)) (6) 1) } 2

X=[1,23,45,6] Y=[6,5432,1]

X Axis
foy={ 1/6, 1/6, 1/6, 1/6, 1/6, 1/6 )

Matrix Version: 1 2 3 a 5 6
1 0.1667 0 0 0 0 0
2 0 0.1667 0 0 0 0
RX,Y = { (1>1)) (172)> KD (176)) X 3 0 0 0.1667 o o o
. 4 0 0 0 0.1667 0 0
. 5 0 0 0 0 0.1667 0
(6,1), (6,2), ..., (6,6) } ° - - - - e




Joint Random Variables as Equiprobable Tuples

The standard libraries for statistics will give you the option of specifying the PDF (as
“weights”) or leaving it out, in which case the assumption is that it is equiprobable:

numpy.average

- S
numpy.average(a, axis=Nond weights=None, deturned=False) [source]
~ -

Compute the weighted average aforg The specified axis.

Parameters: a: array_like

1 import numpy as np
Array containing datato b 2
attempted. 3 X=(1,2,3,4,5,6]]
4
axis : None or int or tuple of in 5 print( np.average(X) ) # Default is equiprobable
Axis or axes along which t E7> print( np.average(X,weights=(0.1,0.2,0.1,0.2,0.1,0.3]))
over all of the elements of 8
last to the first axis. 9 print( np.average(X,weights=[(1/6,1/6,1/6,1/6,1/6,1/6]))
New in version 1.7.0. 3.5
If axis is a tuple of ints, av 3.9
the tuple instead of a sing 3.5000000000000004

-

( - weights : a\rqay_/ike, optional

S~ -An—aﬁay of weights associated with the values in a. Each value in a contributes
to the average according to its associated weight. The weights array can either
be 1-D (in which case its length must be the size of a along the given axis) or of
the same shape as a. If weights=None, then all data in a are assumed to have

a weight equal to one.



Joint Random Variables as Equiprobable Tuples

The standard libraries for statistics will give you the option of specifying the PDF (as
“weights”) or leaving it out, in which case the assumption is that it is equiprobable:

numpy.cov

- - .
_ P — —_— -
- ~

numpy.CoOV(m, y=None, rowvar=True, bias=False, ddof=&one. fweights=None, aweights=None) )[source]
Estimate a covariance matrix, given data and weights.\ ~ -~ -

[ _—

Covariance indicates the level to which two variables vary together. If we examine N-dimensional
samples, X = [x_1, x_2, ... x_NJAT, then the covariance matrix element C_{ij} is the covariance of x_i
and x_j. The element C_{ii} is the variance of x_i.

See the notes for an outline of the algorithm.

fweights : array._like, int, optional fweights = frequency
1-D array of integer frequency weights; the number of times each observation . .
counts, as in a histogram
vector should be repeated.
New in version 1.10.

aweights : array_like, optional
1-D array of observation vector weights. These relative weights are typically
large for observations considered “important” and smaller for observations
considered less “important”. If ddof=0 the array of weights can be used to as- as in a2 PDF
sign probabilities to observation vectors.
New in version 1.10.

aweights = probabilities,



Joint Random Variables as Equiprobable Tuples

The standard libraries for statistics will give you the option of specifying the PDF (as
“weights”) or leaving it out, in which case the assumption is that it is equiprobable:

In [21): 1 |X
2 |y

(1,2,3,4,5,6]
[6,5,4,3,2,1]

w

XX

Xy X
XY X

[ ]
[ X, ]
print(XX)
print(XY)
print()

2 O 0O ~Jon U0

print( np.cov(XX,bias=True) ) # Default is equiprobable
print()
‘¢““ Yo
printﬁ.np.cov(xx,bias=True)[0][lJ ‘} # Default is equiprobable
print()"--.._____ *

print( np.cov(XY,bias=True)[0][1] ) # Default is equiprobable
print()
# Weights same as frequency counts for (x1,y1), ...

T S S S S S S S S S gy S
Voo ummd wNhme-~Co

N

print( np.cov(XY,bias=True,fweights=[10, 20, 10, 20, 10, 30])([(0][(1]) )
print()

Nk

NNNNN

;o w

# Weights same as PDF = probabilities for each member of X
print( np.cov(XY,bias=True,aweights=[(0.1,0.2,0.1,0.2,0.1,0.3])[0][1] )

N
o

(ex, 2, 3, 4, 5, 61, (1, 2, 3, 4, 5, 6]]
(e, 2, 3, 4, 5, 61, [6, 5, 4, 3, 2, 1]]

((2.91666668 2.91666667
[2.91666667 2:946666677

*
L
*

]
2.9166666666666665
-2.9166666666666665

-3.09

-3.09



Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the ”center” of the distribution) can
be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Example' 5 Midpoint of Joint Random Variable
X = ([0, 1, 2, 3}
Y = [ 0 ’ 2 r’ 4 ’ 3 ] 4 @

XY = [ (0,0),

(1,2),

(2,4),

(3,3) ] '
Midpoint = (uy, uy) 0 .

= 3/21 9/4 ) =




Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the ”center” of the distribution) can
be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Midpoint of Joint Random Variable

20

15 1

10 4 @ @
05 4
A
& 001 @
>
-0.5 4
-1.0 @ @

-1.5 1§

-2.0 T T T T T T T
-2.0 -15 -1.0 -0.5 0.0 05 10 15 20

X Axis



Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the ”center” of the distribution) can
be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Midpoint of joint Random Varnable

60

Y Axis
L J




Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the ”center” of the distribution) can
be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Midpoint of Joint Random Variable

+ +
+
+
. - = ¥
%0 - ‘+t
4 = +
+
-
* -
+ + +
* -
80 + o+ = +
+ +
+ +
70+ + L J + o+
+
+ -
. + 0+
) +
8- | +
x + +¢
< - Sl ¥ =
> 60 .
- + o+
+
I +
+ +
50 -
+
+
+ - +
40
-
+
30
+

00 25 50 75 10.0 125 15.0 175
X Axis



Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the ”center” of the distribution) can
be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Example' 5 Midpoint of Joint Random Variable
X = ([0, 1, 2, 3}
Y = [ 0 ’ 2 r’ 4 ’ 3 ] 4 @

XY = [ (0,0),

(1,2),

(2,4),

(3,3) ] '
Midpoint = (uy, uy) 0 .

= 3/21 9/4 ) =




Joint Random Variables: Mean and Variance?

The notion of a mean (a single number representing the "center” of the distribution) for
a can be extended to a

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Height vs Weight for 25K Individuals

+ Data
180 === Trendline
4 Midpoint

160 1

-
o
L= p

140 1

Weight

100 A1

57.5 60.0 625 65.0 67.5 70.0 725
Height



Joint Random Variables: Covariance

Recall: The Variance of X is defined b y:
Var(X) = E[(X = ux)*] = E[(X = px) * (X = x)]

= E(X*) — = E(X * X) — ux * ux
The Covariance of two JRVs X and Y is defined as follows:
Cov(X,Y) = E[(X —pux ) * (Y —puy)|]
= EX *Y) — py * py

The Covariance of two JRVs X and Y has the same defects as the variance of a single
RV:

o The units are the product of the units of X and Y: if X = height and Y = weight,
then the units might be foot-pounds!

o The scale is hard to work with: What does a covariance of 123.445 foot-pounds
mean?



JRVs: Covariance and Correlation Coefficient

Therefore we standardize the covariance so it is unit-less and in the interval [-1 .. 1].

The Correlation Coefficient of X and Y is defined as:

E[(X —pux) = (Y - X - e
CovX,Y) _ ElX —px)* ¥ —py) _ Kx Y - Bz % Zy )

Ox * Oy Ox * Oy Ox Ox

Pxy =

where Zx and Zy are the standardized forms of X and Y.

To compute, it is best to use:




Joint Random Variables: Correlation Coefficient

Motivation for the Correlation Coefficient

Example: Two Sine Waves in Phase (Perfectly Correlated)

Sine Wave A

Pxy =

Cov(X,Y)

Oy * Oy

10

05 1

23 00
X -05

-1.0

10 12

10

05

05

-10

1
Broduct of Sine Waves A and B in Same Phase

10

05

ZX * ZY 00

05

-1.0

-1%x-1 =

___;-_____-____ | |
o
o
@
=
<3

E[Zx % Zy |

E[ZX *Zy] >0



Joint Random Variables: Correlation Coefficient

Cov(X,
Motivation for the Correlation Coefficient Pxy = L, = E|Zy xZy ]
Oy * Oy
Example: Two Sine Waves 180° out of Phase (Perfectly Anti-Correlated)

——

05 /\ | /\

00 : :

X e e e 7
0y s B , : :

1
1
1
1
1
1
1
1
1
00 1
1 1
1
1
1.0 X
T 1 - - 1 -
1 1
1 1
1 1

10

:: WW E[ZX*Zy] <0

l1¥-1 = -1 —“1%1 = -1

ZX *Zy




Joint Random Variables: Correlation Coefficient

Zx

ZX *ZY

E[ZX *Zy] =0



JRVs: Covariance and Correlation Coefficient

The range of the Correlation Coefficient of X and Y is from -1 to 1:

PXy = S
-1.0 0.0 1.0
Inversely Uncorrelated Correlated

correlated



Joint Random Variables

Example 1: Toss 2 coins; X = # heads on first, Y = # heads on second

Joint Distribution for X and Y Y 0.50 oy
(yrmuy)*2 * p(y;): 0.125 0.125 0.25 :var(X)
Ex 1: toss 2 coins: X = # head:s first, Y = # heads second (yrmuy): -0.50 0.50
pby) yirply): 0.00 0.50 0.50 y Marginal Distribution of X
(-muy)®*p(x)  (%-muy) x*p(x) 0 1 pix)
X 0.125 0.50 0.50 1 0.25 0.25 0.5
0.125 -0.50 0.00 0 0.25 0.25 0.5
var(X): 0.25 My 0.50 ply;): 0.5 0.5 1
oy: 0.50 0.25 :0x * Oy

Marginal Distribution of Y

0 1 (x-muy)*(y-muy) *p(x,y;):
0 1 cov(X,Y): 0.00 -0.0625 0.0625
0.25 0.25 p(X,Y): 0.00 0.0625 -0.0625

0
0 0.25| ~0.25

EX*Y)=0x0254+1%0254+0%025+0x%0.25 = 0.25

Cov(X,Y) EX *Y)— uy * uy _025-0.5%0.5 0.0

g = Ox * Oy Ox * Oy B 0.5%0.5



Joint Random Variables

Calculating the Covariance and Correlation Coefficient is best done with
either a spreadsheet or Python:

Example: Toss 1 coin; X = # heads, Y = # heads

Joint Distribution for X and Y Y 0.50 0y
(yrmuy)A2 * p(y)): 0.125 0.125 0.25 :var(X)
Ex 2: toss 1 coins: X = # heads, Y = # heads (yrmuy): -0.50 0.50
plx¥) yply): 0.00 0.50 0.50 y Marginal Distribution of X
(-mu)®*p(x)  (x-muy) x*px) 0 1 pix;) 08
X 0.125 0.50 0.50 1 0 0.5 0.5 o4 |
0.125 -0.50 0.00 0 0.5 0 0.5 02 ] |
var(X): 0.25 we  0.50 ply;): 0.5 0.5 1 0 ) .
oy: 0.50 0.25 .oy * oy

Marginal Distribution of Y

0 1 (x-muy) *(y;-muy) *p(%y;):
0 1 cov(X,Y): 0.25 0.0000 0.1250
1 0.0 05 p(XY): 1.00 0.1250 0.0000
0 0 0
0.5 0.0

EX*xY)=0x00+1%054+0x05+0%00 = 0.5

Cov(X,Y) _ EX xY)— puy % py _ 05-05%0.5 0.25

Ox * Oy Ox * Oy 0.5%0.5 0.25

= 1.0

Pxy =



Joint Random Variables

Calculating the Covariance and Correlation Coefficient is best done with
either a spreadsheet or Python:

Example: Toss 2 coins; X = # heads on first coin, Y = total # of heads

Y 0.71 Oy
(y;-muy)A2 * p(y;): 0.250 0.000 0.250 0.50 :var(X)
(yrmuy): -1.00 0.00 1.00 Marginal Distribution of X
p(xiy;) yi*ply)): 0.00 0.50 0.50 1.00 My 06
(xirmux)® *p(x)  (xi-muy) xi*p(x)) 0 1 2 p(x) 04 |
X 0.125 0.50 0.50 1 0 0.25 0.25 0.5 02 | I .
0.125 -0.50 0.00 0 0.25 0.25 0 0.5 0
var(X): 0.25 Hy: 0.50 ply;): 0.25 0.5 0.25 1 1 0
oy: 0.50 0.35 0y * Oy
Marginal Distribution of Y

0.6

0.3
0.4

02 1 . 0.2

NE B B B a1

0 1 2
° iz
(xi-mux) *(y;-muy) *p(x;,yj):
X * Y cov(X,Y): 0.25 0.0000 0.0000 0.1250
p(X,Y): 0.707 0.1250 0.0000 0.0000
0 1 2
1 0 1 2
0.0 0.25 0.25
5 5 5 5 _ Cov(X,Y) EX %Y)— ux * uy 075-05%1.0 0.25 0.707
Xy = —————— = — = = »
0 | Bas| 25| G0 oy * Oy Oy * Oy 0.5 % 0.707 0.354



Joint Random Variables

Calculating the Covariance and Correlation Coefficient is best done with

either a spreadsheet or Python:

Example: Toss 2 coins; X = # heads on first coin, Y = total # of heads

HH => (1,2)
HT => (1,1)
TH => (0,1)
TT => (0,0
X =[1,1,0,0]
Y =[2,1,1,0]

X

var(X):

Y 0.71
(yrmuda2 * ply)|  0.250 0.000 0.250 0.50
(ypmuy): -1.00 0.00 1.00

phy) veply)|  0.00 0.50 0.50 1.00
(emog’ *plx)  (emur)  x%pb) e 0 1 2 plx)
0.125 0.50 0.50 1 0.25 0.25 05
0.125 -0.50 0.00 0 0.25 0.25 0 0.5

0.25 We 050 ply):| 025 0.5 0.25 1
0.50 0.35

Oy

wvar(X)



