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Lecture 21:
• Joint Random Variables:  Basic Notions

• JRVs:  Independence, Covariance, and Correlation 



Joint Random Variables

A Joint Random Variable is a pair of random variables:

Now when an outcome is requested, the sample point is translated into two
real numbers by the action of each random variable responding to the same 
experiment:   

Throw two dice:      X = "the number of heads showing," and 
Y = "1 if both tosses are heads, 0 otherwise."
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def XY():
a = randint(0,2)
b = randint(0,2)
return (a+b,a*b)
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Joint Random Variables

Since the sample space can be just about anything, there is wide latitude in 
creating the random variables and their relationship (or lack thereof):

They may be obviously dependent: 

Throw two dice:      X = "the number of heads showing on both coins," and 
Y = "the number of heads showing on the first coin." 
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Joint Random Variables

Since the sample space can be just about anything, there is wide latitude in creating 
the random variables and their relationship (or lack thereof):

They may be obviously independent: 

Throw two dice:      X = "the number of heads showing on the second coin, and 
Y = "the number of heads showing on the first coin." 
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Joint Random Variables

A joint random variable (X,Y) is called discrete if both X and Y are discrete, and 
continuous if both X and Y are continuous.   Other combinations are possible, but we will 
only consider these two. 

Probability Mass Function for a Discrete JRV (X,Y):

The probability that X produces value j and Y produces value k is:

Example 1: Toss 2 coins; X = # heads on first coin,  Y = # heads on second

Sample Space X Y

T T 0 0
T H 0 1
H T 1 0
H H 1 1

fX,Y(0,0)  =   0.25
fX,Y(0,1)  =   0.25
fX,Y(1,0)  =   0.25
fX,Y(1,1)  =   0.25



Joint Random Variables: Joint Probability Function

Example 1: Toss 2 coins; X = # heads on first coin,  Y = # heads on second

Sample Space X Y

T T 0 0
T H 0 1
H T 1 0
H H 1 1

fX,Y(0,0)  =   0.25
fX,Y(0,1)  =   0.25
fX,Y(1,0)  =   0.25
fX,Y(1,1)  =   0.25
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Note: 
Probabilities are 
volumes!   



Joint Random Variables: Joint Probability Function

Example 2: Toss 2 coins; X = # heads on first coin,  Y = 1 if 2 heads, 0 else

Sample Space X Y

T T 0 0
T H 0 0
H T 1 0
H H 1 1

fX,Y(0,0)  =   0.5
fX,Y(0,1)  =   0.0
fX,Y(1,0)  =   0.25
fX,Y(1,1)  =   0.25
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Joint Random Variables: Joint Probability Function

Question: Toss 2 coins; X = 1 if 2 heads, 0 else,  Y = total number of heads

What is the joint probability chart for this Joint Random Variables?
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Joint Random Variables: Marginal Distributions
The Marginal Distributions of a Joint Random Variable are the individual 
random variables, considered separately from each other:

Example 1: Toss 2 coins; 
X =  # heads  on first coin,  
Y = # heads on second

Sample Space X Y

T T 0 0
T H 0 1
H T 1 0
H H 1 1



Joint Random Variables: Marginal Distributions

Example 2: Toss 2 coins; X = # heads on first coin,  Y = 1 if 2 heads, 0 else

fX,Y(0,0)  =   0.5
fX,Y(0,1)  =   0.0
fX,Y(1,0)  =   0.25
fX,Y(1,1)  =   0.25



Joint Random Variables: Marginal Distributions

Example 3: Toss 2 coins; X = # heads on first coin,  Y = total # of heads

X ~ Bern(0.5)       E(X) = 0.5      Var(X) = 0.5*0.5 = 0.25 𝜎𝑋 = 0.5

Y ~ B(2,0.5)         E(Y) = 1      Var(Y) = 2*0.5*0.5 = 0.5 𝜎Y = 0.717



Joint Random Variables: Marginal Distributions
We will mostly concern ourselves with the 
bivariate case (two RVs), and in lab we will 
study ways of displaying 2D data.

The main insight you need for the 2D case 
is  that now, 

o Probabilities are volumes; and
o The volume of a probability space must be 1.0.



Joint Random Variables: The Continuous Case

We will not do much with the continuous case, but the modifications are straight-
forward (must use 2D intervals/areas, replace sums with integrals). 

Discrete Case  (can use PMF)          Continuous Case (must use CDF)



Joint Random Variables: The Continuous Case

It is often useful to display the marginal distributions along with the joint distribution:
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Joint Random Variables: The Continuous Case

Example:  Bivariate Uniform Distribution (X,Y)

def uniform2D():
return  ( random(), random() )

PDF is a unit cube of volume 1.0:                                  But in the uniform case it
can be viewed from ABOVE
as a unit square:

X

Y
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Y
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Joint Random Variables: Independence (Review!)

Again, we can easily define the notion of independence, using the expected 
definition; e.g., two random variables are independent if and only if

That is, each joint probability is the product of the marginal probabilities. 

INDEPENDENT:
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Joint Random Variables as Multivariate Points

The standard way of presenting a Joint Random Variable is to specify the 
range of each marginal distribution and the probabilities of each tuple 
returned by the JRV:

R_Y

R_X



Joint Random Variables as Equiprobable Tuples

However, when not all possible tuples are possible (there are 0’s in the matrix), 
but those that are possible are equiprobable, then it may be simpler to simply 
list the tuples:

RX,Y  =  { (0,0), (0,1), (1,1), (1,2) }

fX,Y =  {  ¼,     ¼,     ¼,     ¼    }



Joint Random Variables as Equiprobable Tuples

This is particularly true when thinking about sampling points from a large 
population, such as tuples of real numbers.   

For example, suppose you have two thermometers, one showing Fahrenheit, 
and one showing Celsius, and you test them by taking 10 samples, yielding 10 
pairs of floating-point numbers, which can be shown by a scatterplot:

[(45.2, 9.1), 
(48.2, 9.4), 
(49.1, 10.5), 
(49.8, 12.1), 
(52.4, 13.2), 
(55.9, 12.3),
(58.6, 15.7), 
(61.7, 16.1), 
(63.1, 17.1), 
(64.1, 18.2)  ]

X = [ 45.2,  48.2,  49.1,   49.8,  52.4,  55.9,  58.6,  61.7,  63.1,  64.1 ]
Y = [ 9.1,    9.4,    10.5,  12.1,  13.2,  12.3,  15.7,  16.1,  17.1,  18.2 ]



Joint Random Variables as Equiprobable Tuples
When the number of points is not too large, then we can represent the sampled points as 
a matrix, giving all the equiprobable tuples equal probability:

Example:  Roll a single die.  
X = number showing on the die
Y = 7 – X

Sampling Version:

RX,Y  =  {  (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)  }

X = [1,2,3,4,5,6]    Y = [ 6,5,4,3,2,1 ]

fX,Y ={ 1/6, 1/6, 1/6, 1/6, 1/6, 1/6  }

Matrix Version:

RX,Y  =  { (1,1), (1,2), …, (1,6),
.
.

(6,1), (6,2), …, (6,6)   }



Joint Random Variables as Equiprobable Tuples
The standard libraries for statistics will give you the option of specifying the PDF (as 
“weights”)  or leaving it out, in which case the assumption is that it is equiprobable:



Joint Random Variables as Equiprobable Tuples
The standard libraries for statistics will give you the option of specifying the PDF (as 
“weights”)  or leaving it out, in which case the assumption is that it is equiprobable:

fweights = frequency 
counts, as in a histogram

aweights = probabilities, 
as in a PDF



Joint Random Variables as Equiprobable Tuples
The standard libraries for statistics will give you the option of specifying the PDF (as 
“weights”)  or leaving it out, in which case the assumption is that it is equiprobable:



The notion of a mean (a single number representing the ”center” of the distribution) can 
be extended to a  

Midpoint  = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Example: 

XY = [ (0,0), 
(1,2),
(2,4),
(3,3)  ]

Midpoint = 

= ( 3/2, 9/4 )

Joint Random Variables: Mean and Variance?
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The notion of a mean (a single number representing the ”center” of the distribution) for 
a can be extended to a  

Midpoint = Mean Vector = means of the marginal distributions

This defines the “centroid” or “center of gravity” of the distribution:

Joint Random Variables: Mean and Variance?



Recall: The Variance of X is defined b y:

The Covariance of two JRVs X and Y is defined as follows:

Joint Random Variables: Covariance

The Covariance of two JRVs X and Y has the same defects as the variance of a single 
RV:

o The units are the product of the units of X and Y:   if X = height and Y = weight, 
then the units might be  foot-pounds!

o The scale is hard to work with:  What does a covariance of 123.445 foot-pounds 
mean?



Therefore we standardize the covariance so it is unit-less and in the interval [-1 .. 1]. 

The Correlation Coefficient of X and Y is defined as:

where ZX and ZY are the standardized forms of X and Y. 

To compute, it is best to use:

JRVs: Covariance and Correlation Coefficient



Joint Random Variables: Correlation Coefficient

Motivation for the Correlation Coefficient

Example: Two Sine Waves in Phase  (Perfectly Correlated)



Joint Random Variables: Correlation Coefficient

Motivation for the Correlation Coefficient

Example: Two Sine Waves 180o out of Phase (Perfectly Anti-Correlated)



Joint Random Variables: Correlation Coefficient

Motivation for the Correlation Coefficient

Example: Two Random Sine Waves (No Correlation)



The range of the  Correlation Coefficient of X and Y is from -1 to 1:

Inversely
correlated

CorrelatedUncorrelated

1.0-1.0 0.0

JRVs: Covariance and Correlation Coefficient



Joint Random Variables

Example 1: Toss 2 coins;  X = # heads on first, Y = # heads on second
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Joint Random Variables
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Example: Toss 1 coin;  X = # heads, Y = # heads 

Calculating the Covariance and Correlation Coefficient is best done with 
either a spreadsheet or Python:



Joint Random Variables
Calculating the Covariance and Correlation Coefficient is best done with 
either a spreadsheet or Python:
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Example: Toss 2 coins;  X = # heads on first coin, Y = total # of heads
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Joint Random Variables
Calculating the Covariance and Correlation Coefficient is best done with 
either a spreadsheet or Python:

Example: Toss 2 coins;  X = # heads on first coin, Y = total # of heads

H H   =>  (1,2)
H T   =>  (1,1)
T H   =>  (0,1)
T T   =>  (0,0)

X = [1,1,0,0]
Y = [2,1,1,0]


